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ABSTRACT
This supplementary material provides the theoretical details
to the derivation of the lower bound of scaling factor s in the
multi-modal cosine loss, i.e., Equation 4 in the main paper.

1. PROOF OF EQUATION 4

Equation 4: The Lower Bound of The Scaling Parame-
ter. Denoting C as the total class number and p as the ex-
pected posterior probability for the ground-truth class, the
lower bound of s in MMCosine can be given as:
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We follow the demonstration of [1] in single-modality sce-
nario and hypothesize that the learned features of audio and
visual encoder lie on a modality-specific hypersphere. The
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Further, to satisfy pyi
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With Jensen’s inequality, we have:
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Then we can simplify (4) further by:
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We plug (6) into (3) and get:

1 + (C − 1)e−2sC+1
C−1 ≤ 1

p
. (7)

By further simplification, we get the final formulation of the
lower bound as:
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This formula provides a theoretical view that the scaling pa-
rameter should be enlarged with higher expectation of p and
larger class numbers. Considering s as the radius of each hy-
persphere, larger radius allows features of more labels to dis-
tribute in a compact space, which is associated with higher
p. It should also be noticed that formula (4) is a loose scal-
ing without constraints to the combined uni-modal weight and
might not be the best.

2. SENSITIVITY OF THE SCALING PARAMETER

To reveal the influence of various scaling parameters, we typi-
cally use 0.99 as the value of p to calculate the lower bound s.
The sensitivity analysis is conducted on CREMAD, SSW60
and Voxceleb2 by merely changing the value of s.
From Tab. 1, our method outperforms the baseline across a
wide range of s values above the lower bound, and the optimal
value is dependent on specific datasets. On the large-scale
dataset Voxceleb2, the performance increases when reducing
s, which could be an empirical trick for other datasets.



s CD ↑ s SSW ↑ s VC2 ↓
vanilla 60.08 vanilla 73.32 vanilla 6.13

2 63.44 10 73.58 10 4.13
5 61.69 20 75.95 20 4.91
10 59.82 30 74.87 30 5.50
30 62.09 40 73.85 40 5.91

Table 1. Results of different s.

3. GENERALITY TO OTHER MODALITIES

We propose our method under AVFG tasks and name it MM-
Cosine for its universe form for any modalities. To verify
whether our work can be generalized to other multi-modal
scenarios, we conduct additional experiments on UCF-101 for
coarse-grained action recognition using RGB, flow, and RGB
difference [2].

Modality Softmax+CE MMCosine

RGB+flow 81.15 82.02
RGB+flow+diff 82.29 83.22

Table 2. Results of other modalities on UCF-101.

As shown in Tab. 2, our method yields improvement across
various modality combinations, including triple modalities
due to its simple and universal form.

4. COMPARISON WITH OTHER MULTI-MODAL
LOSS

In the original paper, we compare our method with other
multi-modal losses, such as G-blending, which is composed
of multiple loss terms. Our method outperforms G-blending
both in imbalance mitigation and performance enhancement.
We also provide results comparing the multi-modal loss in
[3]. It combines classification loss with auxiliary contrastive
loss, and we follow the same setting including temperature
and weights of loss components.

Loss Method Vanilla MMCosine

Softmax+CE 60.08 63.44
CCL [3] 61.56 64.02

Table 3. Results of other multi-modal loss on CREMA-D.

From Tab. 3, our method directly surpasses other multi-modal
losses and can easily be stacked with them to further boost
the performance. It is worth emphasizing that versatility and
imbalance mitigation are key aspects of our contributions.
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